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Fig. 1. Ink drop. We compare from left to right FLIP, APIC, and PolyPIC for an inkjet in an ambient incompressible fluid. PolyPIC more effectively resolves
the vorticial details.

Recently the Affine Particle-In-Cell (APIC) Method was proposed by Jiang et
al.[2015; 2017b] to improve the accuracy of the transfers in Particle-In-Cell
(PIC) [Harlow 1964] techniques by augmenting each particle with a locally
affine, rather than locally constant description of the velocity. This reduced
the dissipation of the original PIC without suffering from the noise present in
the historic alternative, Fluid-Implicit-Particle (FLIP) [Brackbill and Ruppel
1986]. We present a generalization of APIC by augmenting each particle with
a more general local function. By viewing the grid-to-particle transfer as a
linear and angular momentum conserving projection of the particle-wise
local grid velocities onto a reduced basis, we greatly improve the energy and
vorticity conservation over the original APIC. Furthermore, we show that
the cost of the generalized projection is negligible over APIC when using
a particular class of local polynomial functions. Lastly, we note that our
method retains the filtering property of APIC and PIC and thus has similar
robustness to noise.
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1 INTRODUCTION
Simulation techniques for natural phenomena in computer graph-
ics applications must accommodate a wide range of geometric do-
mains and material behaviors. Lagrangian techniques accurately
resolve transport phenomena and allow for simple rendering. How-
ever, Eulerian techniques naturally resolve topology change and
contact/collision. Particle-In-Cell (PIC) [Harlow 1964] is a hybrid
approach designed to attain the benefits of both views, without
suffering from their drawbacks. Indeed PIC approaches like Fluid-
Implicit-Particle (FLIP) [Brackbill and Ruppel 1986] for incompress-
ible fluids and the Material Point Method (MPM) [Sulsky et al. 1994,
1995] for history dependent materials have proven very effective in
graphics applications in recent years.
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Fig. 2. Rotating column of colored dust. We demonstrate intricate vorticial patterns that arise from simple initial conditions with incompressible flow.
PolyPIC achieves great detail with modest spatial grid resolution (88 × 132 × 88). The rightmost image shows that despite the energetic nature of our method,
our simulations are stable at long runtimes.

While very powerful, PIC techniques have a number of well
known artifacts. Particles store the primary state like mass and mo-
mentum, but the effect of internal stress on momentum is added
on an Eulerian grid. This is reconciled by transfers back and forth
between the particles and grid. There is generally a mismatch in
the number of particle and grid degrees of freedom which can lead
to errors during the frequent transfers between representations
[Brackbill 1988]. The original PIC possesses a stabilizing filter prop-
erty since particle velocities are interpolated from the grid after the
stress response. However, this leads to excessive dissipation since
particle modes are essentially overwritten by the generally lower
resolution grid. FLIP removes this limitation by interpolating incre-
ments in velocity rather than velocity itself as in PIC; however this
means that particle modes invisible to the grid persist despite not
receiving a meaningful constitutive response. This can lead to parti-
cle artifacts like noise, instability, clumping and volume loss/gain.
Recently, Jiang et al. [2015; 2017b] developed an Affine Particle-In-
Cell (APIC) approach designed to prevent these artifacts, without
incurring the excessive dissipation of PIC. The idea is to retain the
filtering property, but to prevent dissipation by interpolating more
information from the grid to the particles. By allowing particles to
store both velocity and velocity derivative information, Jiang et al.
design particle/grid transfers that conserve angular momentum and
generally attain the benefits of both PIC and FLIP.

We present an improvement to this technique that allows for
locally polynomial, rather than locally affine approximations to the
grid velocity field: PolyPIC. Our generalization improves kinetic
energy conservation during transfers which leads to better vortic-
ity resolution in fluid simulations and less numerical damping in
elastoplasticity simulations. Our transfers are designed to select
particle-wise polynomial approximations to the grid velocity that
are optimal in the local mass-weighted L2 norm. This is equivalent
to the reduced basis APIC derivation in [Jiang et al. 2017b] for affine

modes, but generalized to polynomial modes. Indeed our notion of
transfers reproduces the original PIC if only constants are used and
APIC if only affine polynomials are used. Furthermore, we derive a
polynomial basis that is mass-orthogonal to facilitate rapid solution
of the optimality condition. By design, this reduces the projection
to the polynomial basis to the solution of a diagonal linear system
of size equal to the number of local polynomial modes. This has the
added benefit of simplifying applications with staggered grids. The
original APIC used a modified approximation to the linear part of
the affine velocity in the case of staggered grids. We summarize our
contributions as:

• A generalization of APIC from locally affine to locally poly-
nomial representations that improves kinetic energy con-
servation in particle/grid transfers.

• A mass weighted L2 optimality condition that achieves
linear and angular momentum conservation.

• A mass-orthogonal class of polynomials for rapid solution
of projection to the polynomial basis.

• Natural treatment of staggered and collocated grids.
We demonstrate the benefits of our technique in a number of repre-
sentative applications of incompressible flow and MPM simulation
of elastoplastic materials.

2 PREVIOUS WORK
PIC techniques have been widely adopted in computer graphics
applications. Zhu and Bridson first used FLIP for sand and liquids
in [Zhu and Bridson 2005]. Foster and Metaxas used particles for
tracking liquids in [Foster and Metaxas 1996]. Most applications in
computer graphics are for incompressible flows using a MAC-grid
[Harlow and Welch 1965] pressure projection to enforce incompress-
ibility in the grid momentum update [Batty et al. 2007; Batty and
Bridson 2008; Boyd and Bridson 2012; Larionov et al. 2017; McAdams
et al. 2009; Zhang et al. 2016]. Unilateral incompressibility, where a
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divergence-inequality constraint replaces the divergence-free con-
straint, has been used with FLIP for a wide range of applications.
Narain et al. use this for sand [2010] and crowd dynamics [2009].
Daviet et al. [2016] also use this technique for sand. Gerszewski
and Bargteil use mass-full FLIP with a unilateral incompressibility
constraint to resolve large-scale splashing liquids [Gerszewski and
Bargteil 2013].

MPM has been used for a wide range of graphics applications
involving more esoteric materials including snow [Stomakhin et al.
2013], sand [Daviet and Bertails-Descoubes 2016; Klár et al. 2016;
Tampubolon et al. 2017], foam and complex fluids [Ram et al. 2015;
Yue et al. 2015], large strain elasticity [Zhu et al. 2016], cloth and
fiber collisions [Jiang et al. 2017a], and phase change [Stomakhin
et al. 2014].

Various works have improved or modified aspects of the standard
PIC techniques commonly used in graphics. Edwards and Bridson
investigated higher-order accuracy [Edwards and Bridson 2012].
Narrow band and adaptive particle sampling techniques as well
as adaptive/unstructured Eulerian grids dramatically increase effi-
ciency [Ando et al. 2012, 2013; Ando and Tsuruno 2011; Ferstl et al.
2016; Hong et al. 2008, 2009]. Ando et al. [2015] use a stream func-
tion to enforce incompressibility, rather than the more commonly
used MAC projection. Mercier et al. [2015] increase apparent reso-
lution of FLIP with secondary surface wave simulation. Adaptive
shallow water height field and FLIP coupling achieve impressive
simulation rates [Chentanez and Muller 2014]. Smoothed-particle
hydrodynamics (SPH) [Desbrun and Cani 1996] has proven very
powerful for graphics applications. Several works couple SPH with
PIC techniques to improve aspects like performance, memory usage
and discrete incompressibility [Gao et al. 2009; Hong et al. 2008;
Lee et al. 2009; Losasso et al. 2008; Raveendran et al. 2011; Zhu et al.
2010].

There are a number of recent PIC approaches designed to im-
prove robustness to noise without sacrificing accurate energy and
momentum conservation. Hammerquist and Nairn [2017] developed
a PIC extension designed to reduce the noise of the FLIP by adding
a smoothing term to the FLIP velocity. This strikes a good balance
between noise reduction and energy preservation. Edwards and
Bridson also add a regularization term to diminish particle noise
[Edwards and Bridson 2012]. Gritton and Berzins [2017] reduce
noise by filtering spatial gradients based on a local SVD approxi-
mation of the null space of the particle-to-grid transfer operator.
Wallstedt and Guilkey use a locally-affine assumption as in [2015;
2017b], but they use FLIP grid-to-particle transfers that still suffer
from noise [Wallstedt and Guilkey 2007]. Um et al. develop a particle
repulsion force to improve particle bunching associated with the
ringing instability [Um et al. 2014].

3 METHOD OUTLINE AND NOTATION
Our method is concerned with the update of the Lagrangian quan-
tities in PIC calculations. We discuss this in detail and give an
overview of each step in the process in Section (§6). However, we
first motivate our generalized notion of velocity local to a particle
in Section (§4) as well as the connection of our method to the very
useful class of updated Lagrangian techniques in Section (§5).

Fig. 3. Vortex sheet.We compare from left to right FLIP, APIC, and PolyPIC
with 2D incompressible flow. The initial conditions are of a rotating circle
surrounded by stationary fluid. This creates a vortex sheet which our method
effectively resolves. The bottom row shows that despite the energetic nature
of our method, our simulations are stable at long runtimes.

The Lagrangian state associated with particle p at time tn con-
sists of mass mp , position xnp , generalized velocity coefficients cnp
and auxiliary quantities An

p . Note that the mass does not change
with time in accordance with conservation of mass. The auxiliary
quantities in An

p are not relevant to our particle/grid transfers but
we include them for completeness. E.g. in an MPM calculation the
deformation gradient Fnp is auxiliary to transfers and would be in-
cluded in An

p . We will generally consider the update of the auxiliary
quantities to be outside the scope of the paper.

In order to update the Lagrangian state to obtain xn+1
p , cn+1

p
and An+1

p , we first transfer mass and momentum from particle to
grid (Section (§6.1)), then grid momentum is dynamically updated
(Section (§6.2)) and finally, we transfer the generalized velocity
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Fig. 4. Grid interpolation. We visualize the weights wn
ip for multilinear

(NB = 1), collocated (left), multiquadratic (NB = 2), collocated (center) and
weights wn

iα p for linear (NB = 1), MAC grids (right). We emphasize that

the particle interpolates from (NB + 1)d grid nodes.

information from grid to particle (Section (§6.3)). We use the notation
mn

i and vni to denote the mass and velocity transferred to the grid
node xi from the particles before the grid momentum update. We
further use the notation v̂n+1

i to denote the grid node velocity that
is updated in grid momentum update. We use this convention to
distinguish it from vn+1

i , the velocity that is transferred to the grid in
the next time step. Lastly, we use xn+1

i = xi + ∆t v̂n+1
i to denote the

position of the grid nodes if they move with the grid node velocity
v̂n+1
i . This process is illustrated in following commutative diagram.

mp , xnp , c
n
p , A

n
p mp , xn+1

p , cn+1
p , An+1

p

mn
i ,v

n
i mn

i , v̂
n+1
i

P2G

Update
Lagrangian State

Update
Grid Momentum

G2P

Grid-based interpolating functions N (x − xi) provide the mecha-
nism for the transfer of particle and grid quantities. As in many other
recent approaches [Jiang et al. 2015; Steffen et al. 2008; Stomakhin
et al. 2013], the grid interpolating functions are constructed from
dyadic products of one-dimensional B-splines. We use the notation
wn
ip = N (xi − xnp ) to denote the weight of interaction between node

xi and particle xnp .
We note that a particle will interpolate from (NB + 1)d grid

nodes where NB is the B-spline interpolating order (1 for linear, 2
for quadratic, etc) and d = 2,3 is the spatial dimension. In other
words, the particle with position xnp will only have non-zero weights
wn
ip for the (NB + 1)d grid nodes most local to it. We will use the

notation V̂n+1
p ∈ Rd (NB+1)d to denote the vector of updated grid-

node velocities v̂n+1
inkp

corresponding to grid nodes xinkp with non-zero

weights wn
inkpp

V̂n+1
p =

*.........
,

v̂n+1
in1p

v̂n+1
in2p
...

v̂n+1
in
(NB+1)d p

+/////////
-

.

Fig. 5. Velocity modes. We visualize the component-wise velocity modes
from Equation (2) in 2D. The top shows bilinear interpolation and the bottom
shows biquadratic interpolation. Constant (peach), linear (green), bilinear
(pink) and biquadratic (light blue) modes are depicted for x (red) and y
(blue) components.

We use inkp for k = 1,2, . . . , (NB + 1)d as an index for nodes with
non-zero weights wn

inkpp
. We illustrate this in Figure 4. When it is

clear from context, we will use either ik ,wn
ikp

or even ik ,wn
ip in lieu

of the more descriptive inkp ,w
n
inkpp

since the sub and super indices
can become excessive in some expressions.

4 VELOCITY MODES
Our approach closely resembles that of Jiang et al. [2015; 2017b].
Our most fundamental difference is that instead of augmenting
particles with affine velocities, we augment them with more general
functions. In the APIC approaches advocated by Jiang et al. [2015;
2017b], the velocity local to the particle p at time tn is approximated
as

vnp (x) = vnp + C
n
p (x − x

n
p )

where vnp is the velocity of the particle and the matrix Cnp ∈ R
d×d

satisfies Cnp = 0 for PIC, Cnp = −
(
Cnp
)T for RPIC (locally rigid PIC)

and Cnp is arbitrary for APIC.
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In this paper, we improve the approach by considering the particle-
wise local velocity to be of the form

vnp (x) =
Nr∑
r=1

d∑
α=1

sr (ξ
n
p (x) − x

n−1
p )eαcnprα (1)

where the functions sr eα : Rd → Rd are generalized velocity
modes, eα ∈ Rd is the α th standard basis vector and the cnprα are the
coefficients of the modes which are stored in the vector cnp ∈ RdNr .
We build our generalized velocity modes component-by-component
in terms of the scalar functions sr : Rd → R. Nr indicates the total
number of scalar modes that we use. We illustrate these modes in
Figure 5. The function ξnp approximates the mapping from the time
tn configuration to the time tn−1 configuration local to the particle
and represents the advection of the material (see Section (§5)). We
note that in PIC and APIC it is simply given by ξnp (x) = x− ∆tvn−1

p
and ξnp (x) − xn−1

p = x − xnp .
By approximating the velocity local to particle xnp in terms of

more general functions, we allow for a wider range of local behavior
than in the original APIC. Notably, we can write APIC in this way
by choosing affine functions for sr . Similarly, we can write PIC in
this way by choosing constant functions for the sr . In either case we
note that the coefficients cnp ∈ RdNr are equivalent to the vnp and Cnp
in the original APIC and PIC. Note that for APIC, dNr = d

2 + d (d
translations and d2 linear functions) and similarly for PIC, dNr = d .

We primarily use polynomial modes of the form

s (z) =
d∏
β=1

z
iβ
β . (2)

Here zβ is the β th component of z ∈ Rd , the iβ ∈ Z
+ are non-

negative integer powers. We note that this reduces to the original
PIC when iβ = 0 for 1 ≤ β ≤ d . Furthermore, when we choose all sr
with exactly one of the iβ = 1 and the rest equal to zero, we obtain
the affine modes and the method reduces to APIC. In general, we
will modify the polynomial modes in Equation (2) slightly to ensure
a mass-orthogonality condition that is essential for efficiency in the
grid to particle transfer (see Section (§6.3)).

The particle-wise local velocity in Equation (1) is used in the
particle-to-grid and grid-to-particle transfers. As in [Jiang et al. 2015,
2017b], it is used to define a particle’s contribution to the grid node
linear momentum in the particle-to-grid transfer (Section (§6.1)). In
the grid-to-particle transfer (Section (§6.3)), the coefficients cn+1

p
are chosen so that

v̂n+1
p (y) =

Nr∑
r=1

d∑
α=1

sr (y − xnp )eαc
n+1
prα ≈

∑
i
v̂n+1
i N (y − xi) (3)

for y near xnp . However, this approximation is done with points y
in the time tn rather than tn+1 configuration of the material. This
is a local approximation of the updated Lagrangian velocity. The
updated Lagrangian velocity is related to the Eulerian velocity by
the mapping (ξn+1

p )
−1, which approximates the advection of the

material local to the particle to the time tn+1 configuration. We
discuss the significance of this mapping and the notion of updated
Lagrangian velocity in the next section.

5 UPDATED LAGRANGIAN
Eulerian and Lagrangian methods can be characterized in terms of
the flow map of the materialϕ (·,t ) : Ω0 → Ωt [Gonzalez and Stuart
2008]. Here Ω0 ⊂ Rd is the initial configuration of the material.
Each point X ∈ Ω0 is the initial position of a particle of material in
the continuum and ϕ (X,t ) is its location at time t . Ωt is the time
t configuration of the material consisting of the points x = ϕ (X,t )
for some X ∈ Ω0. It is this mapping that defines the Lagrangian
velocity and acceleration of each particle via V(X,t ) = ∂ϕ

∂t (X,t )
and A(X,t ) = ∂V

∂t (X,t ). The Eulerian counterparts can be defined
in terms of the inverse of the flow map ϕ−1 (·,t ) : Ωt → Ω0 via
v(x,t ) = V(ϕ−1 (x,t ),t ) and a(x,t ) = A(ϕ−1 (x,t ),t ) for all x ∈
Ωt . Here X = ϕ−1 (ϕ (X,t ),t ) for all particles X ∈ Ω0 and x =
ϕ (ϕ−1 (x,t ),t ) for all points x ∈ Ωt . Also, the Eulerian velocity and
acceleration are related through the total derivative

a(x,t ) =
Dv
Dt

(x,t ) =
∂v
∂t

(x,t ) +
∂v
∂x

(x,t )v(x,t ). (4)

We note that Levin et al. have developed a number of methods that
make use of the inverse flow map [Fan et al. 2013; Levin et al. 2011;
Teng et al. 2016].

In Lagrangian approaches, the initial configuration of the ma-
terial Ω0 serves as the domain of field functions like velocity and
stress. This is sometimes referred to as a total Lagrangian approach.
Updated Lagrangian approaches use a similar idea, but rather than
using a single reference configuration Ω0, the time tn configuration
Ωtn is used as the reference. With these approaches, it is convenient
to define v̂(y,t ) = V(ϕ−1 (y,tn ),t ) and â(y,t ) = A(ϕ−1 (y,tn ),t ) for
all y ∈ Ωtn . These are the time t velocity and acceleration defined
over Ωtn . They are analogous to the Lagrangian acceleration and
velocity, except the points y ∈ Ωtn serve as the reference for each
particle in the continuum, rather than the initial points X ∈ Ω0. This
is convenient because unlike the Eulerian velocity and acceleration
in Equation (4) that relate through the total derivative, v̂ and â relate
through standard temporal differentiation

â(y,t ) =
∂v̂
∂t

(y,t ). (5)

Thus, the updated Lagrangian velocity and acceleration have the
same essential relation as their total Lagrangian counterparts.

PIC can be viewed as an updated Lagrangian approach. At time tn
the particles have positions xnp = ϕ (Xp ,t

n ) and represent samples
of Ωtn . When we transfer state to the grid (see Section (§6.2)),
we obtain approximations to the velocity vni and massmn

i at grid
nodes xi ∈ Ωtn . This provides an alternative approximation to the
time tn configuration that has the advantage of being defined over
particles with structured (grid-aligned) locations, as opposed to
the unstructured xnp . The structured nature of their locations has
many advantages, e.g. it is easy to interpolate data via regular grid
interpolating functions. Indeed, the Eulerian velocity at time tn can
be approximated via interpolation from v(x,tn ) ≈

∑
i vni N (x−xi). In

the grid momentum update step, we assume that Ωtn is the updated
reference configuration and approximate the updated Lagrangian
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acceleration in an essentially Lagrangian manner via

â(y,tn+1) ≈
∑
i

v̂n+1
i − vni

∆t
N (y − xi), y ∈ Ωtn .

Here, the new grid node velocities v̂n+1
i approximate samples of

v̂(y,tn+1) at grid nodes y = xi ∈ Ωtn . Their interpolant approxi-
mates the updated Lagrangian velocity v̂(y,tn+1) =

∑
i v̂n+1

i N (y −
xi), i.e. the time tn+1 velocity but defined over y ∈ Ωtn .

By definition, the time tn+1 Eulerian velocity is related to the
updated Lagrangian velocity through

v(x,tn+1) = v̂(ξn+1 (x),tn+1) (6)

for x ∈ Ωtn+1 . Here we use ξn+1 (x) = ϕ (ϕ−1 (x,tn+1),tn ) to denote
the mapping of material from the time tn+1 configuration to the
time tn configuration. Intuitively, ϕ−1 maps the point x ∈ Ωtn+1

to its reference location X = ϕ−1 (x,tn+1) ∈ Ω0 and ϕ maps the
reference location to the its position ξn+1 (x) = ϕ (X,tn ) ∈ Ωtn .
Thus X = ϕ−1 (x,tn+1) ∈ Ω0 is the location in the reference config-
uration Ω0 of the particle that occupies x ∈ Ωtn+1 and ξn+1 (x) =
ϕ (ϕ−1 (x,tn+1),tn ) is the location in the time tn configuration Ωtn

of the particle that occupies x ∈ Ωtn+1 . In other words, the mapping
reverses the motion of material over the time step. Since the updated
Lagrangian velocity is the time tn+1 velocity, defined over the time
tn configuration, the composition with this mapping in Equation (6)
can be viewed as the key to defining the Eulerian velocity in a PIC
calculation.

5.1 Particle-Wise Velocity Modes
The v̂n+1

p (y) from Equation (3) locally approximate the updated
Lagrangian velocity v̂(y,tn+1) for y ∈ Ωtn near xnp . We use them
to obtain the similar, but more useful approximation to the Eulerian
velocity vn+1

p (x) to v(x,tn+1). The vn+1
p (x) are required for the

transfers from particle to grid at the beginning of time step tn+1

(see Section (§6.1)). We obtain them by composition with the local
approximation ξn+1

p (x) to ξn+1 (x) for x ∈ Ωtn+1 near xn+1
p

vn+1
p (x) = v̂n+1

p (ξn+1
p (x)). (7)

In our approach, as well as in PIC and APIC, particles move with
the interpolated updated Lagrangian velocity

xn+1
p = xnp + ∆t

∑
i
v̂n+1
i N (xnp − xi).

This motion of the particles defines the material mapping from con-
figuration Ωtn to configuration Ωtn+1 . Since ξn+1 (x) is the inverse
of this mapping, we know its value at each particle ξn+1 (xn+1

p ) = xnp .
We can use this to approximate the mapping local to each particle.

5.1.1 Piecewise constant material motion. If we assume that ξn+1

is approximately a simple translation near xn+1
p and that ξn+1 (xn+1

p ) =

xnp , then we obtain the local approximation

ξn+1
p (x) = xnp +

(
x − xn+1

p
)
. (8)

The PIC and APIC transfers can be derived from the local veloc-
ities in Equation (1) combined with the advection approximation
in Equation (8). With PIC, the local updated Lagrangian velocity

Fig. 6. Updated Lagrangian. Here we visualize the options for the map-
ping ξ n+1

p . As a particle moves, from xnp to xn+1
p , it selects different grid

nodes xi to biquadratically interpolate from (green at tn and yellow at
tn+1). The middle shows the ξ n+1

p (xi) approximation from Equation (8) and
the right from Equation (10).

is constant v̂n+1
p (y) = vn+1

p and thus for any local approximation
ξn+1
p (x),

vn+1
PIC,p (x) = vn+1

p .

With APIC, the local updated Lagrangian velocity is affine v̂n+1
p (y) =

vn+1
p + Cn+1

p (y − xnp ). If we combine this affine velocity via the
composition in Equation (8) with the constant local approximation
in Equation (7), we obtain

vn+1
APIC,p (x) = v̂n+1

p (xnp +
(
x − xn+1

p
)
) = vn+1

p + Cn+1
p (x − xn+1

p ).

5.1.2 Piecewise affine material motion. It is evident that more
accurate local approximations to ξn+1 (x) are readily available. If we
assume that the updated Lagrangian velocity is well approximated
by v̂n+1

p (y) for particles y ∈ Ωtn near xnp , then particle trajectories
will evolve locally as approximately yn+1 = y + ∆t v̂n+1

p (y). This
approximates the motion of the material from Ωtn to Ωtn+1 for
particles near xnp . The inverse of the mapping local to the particle is
then approximately given by ξn+1

p (x) = x̂ where x̂ is given by the
solution to the implicit equation

x = x̂ + ∆t v̂n+1
p (x̂). (9)

Intuitively, for particle x ∈ Ωtn+1 , x̂ ∈ Ωtn is its location at time tn .
For general functions v̂n+1

p , Equation (9) can be solved using New-
ton’s method; however if we approximate the updated Lagrangian
velocity by its affine components v̂n+1

p (x̂) ≈
∑Nr
r=1
∑d
α=1 sr (x̂ −

xnp )eαc
n+1
prα with cn+1

prα only non-zero for affine modes, then the sys-
tem for x̂ is linear and we obtain

ξn+1
p (x) = xnp +

(
I + ∆tCn+1

p
)−1 (

x − xn+1
p
)

(10)

where Cn+1
p is the linear part of the polynomial modes. When

Cn+1
p = 0, we obtain the constant approximation in Equation (8) and

thus this can be seen as a higher-order approximation. We visualize
the approximations to ξn+1

p in Equations (8) and (10) in Figure 6.

6 METHOD
Here we detail all of the steps necessary for advancing the La-
grangian state from time tn to tn+1 in a PIC calculation. We cover
the necessary details for a MPM approach with elastoplastic materi-
als as well as for incompressible Euler fluids with pressure projection
on a MAC grid. This process consists of (1) the transfer from particle
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Fig. 7. MPM elastoplasticity. Rainbow colored sand is poured onto an
elastic Jell-O square. We compare APIC (left) vs. PolyPIC with (from left to
right) Nr = 4 and Nr = 6. Notice that increasing degrees of PolyPIC allow
for more energetic sand flowing and Jell-O bouncing.

to grid of mass and linear momentum (Section (§6.1)), (2) the grid
based momentum update (Section (§6.2)) and (3) the transfer from
grid to particle of generalized velocity coefficients (Section (§6.3)).
The particle-wise local approximations discussed in Sections (§4)
and (§5) are the keys to the particle/grid transfers. We provide the
details of the grid momentum update for completeness but we note
that it is not novel as our approach is not relevant to this step.

6.1 Transfer from Particle to Grid
The velocity local to the particle vnp : Rd → Rd from Equation (1) is
used to design the momentum transfer to the grid. We use the nota-
tion (mv)nip =mpw

n
ipv

n
p (xi) to denote the particle’s contribution to

the momentum local to the node xi and (mv)ni =
∑
p (mv)nip is the

total momentum of grid node from the contribution of all particles.
Similarly, the contribution of the particle’s mass to the grid node
xi is mn

ip = wn
ipmp and the total grid node mass is the sum of the

contributions from all particles mn
i =
∑
pm

n
ip . Using this we can

define the grid node velocity vni by dividing momentum by mass.
In summary, this transfer consists of

(mv)nip =m
n
ip

Nr∑
r=1

d∑
α=1

sr (ξ
n
p (xi) − x

n−1
p )eαcnprα

(mv)ni =
∑
p
(mv)nip , v

n
i =

(mv)ni
mn

i
.

(11)

Either local approximations ξnp (xi) from Equations (8) or (10) can
be used. We note that this is essentially the same transfer as in the
original APIC approaches [Jiang et al. 2015, 2017b], with the only

Fig. 8. MPM elastoplasticity refinement. We verify that the behavior
exhibited by PolyPIC with Nr = 6 at lower resolution in Figure 7 is exhibited
by PolyPIC with Nr = 4 and APIC under refinement.

modification being the more general notions of the local velocity
and the improved approximation to ξnp (xi).

6.2 Update Grid Momentum
The grid momentum update is outside the scope of this paper. How-
ever, we include a generic description for representative cases that
we used to generate our examples: incompressible Euler fluids and
elastoplastic solids with MPM. In the case of the incompressible
Euler, we used a MAC grid discretization of the pressure projection
to update the fluid velocity. In the case of elastoplastic solids and
MPM the update is from the elastic force (see [Fu et al. 2014] for
more details).

v̂n+1
i = vni +

∆t

ρ
∇p, (Euler/MAC)

v̂n+1
i = vni +

∆t

mn
i
(f + g), (elastoplastic/MPM)

where f is the elastic force and g is the gravitational acceleration.

6.3 Transfer from Grid to Particle
The transfer from grid to particle is achieved by choosing the gener-
alized velocity coefficients cn+1

p ∈ RdNr so that the approximation
in Equation (3) is optimal in the appropriate sense. Here we show
that we can solve a linear system for the coefficients cn+1

p ∈ RdNr ,
and that by design our approach (1) is equivalent to PIC and APIC
if only constant or affine modes are used, (2) conserves linear and
angular momentum (see [Fu et al. 2014]) and (3) has a diagonal
system matrix in the equation for the cn+1

p ∈ RdNr .
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sr

st 1 x y xy x2 y2 x2y xy2 x2y2

1 X X X X
x X X X X
y X X X X
xy X X X X
x2 X X X X X X
y2 X X X X X X
x2y X X X X X X
xy2 X X X X X X
x2y2 X X X X X X X X X

Table 1. Sparsity pattern: unmodified. We illustrate the sparsity pattern
of the matrix (Snp )

Tmn
p S

n
p for dimension d = 2 with scalar modes s =

x i1yi2 . X indicates a non-zero entry in the matrix. Note that the multilinear
modes (indicated in red) are mass-orthogonal to one another, but that the
multiquadratic modes couple extensively.

We choose the coefficients cn+1
p to minimize the mass-weighted

distance dnp (cn+1
p ) between local velocities at the grid nodes and the

updated grid-node velocities

dnp (c
n+1
p ) =

∑
i
mn

ip
���v̂
n+1
i − v̂n+1

p (xi)
���
2

=
∑
i
mn

ip

�������
v̂n+1
i −

Nr∑
r=1

d∑
α=1

sr (xi − xnp )eαc
n+1
prα

�������

2

wheremn
ip =mpw

n
ip is the mass that the particle xnp transfers to the

grid node i. The minimizer of this mass weighted distance can be
expressed more concisely in terms of the grid node locations that
received non-zero mass from the particle xnp . Recall that the particle
will have non-zero weightswn

ip for precisely the (NB+1)d grid nodes

in closest proximity to the particle and that V̂n+1
p ∈ Rd (NB+1)d is

the vector of velocities of the grid nodes with non-zero weights.
Similarly, we use the notation Qn

p =
[
Qnp11,Q

n
p12, . . . ,Q

n
pNrd

]
∈

Rd (NB+1)d×dNr where the columns Qnprα of Qn
p are analogous to

V̂n+1
p and have entries equal to the particle-wise local modes sr (xi−

xnp )eα at the grid nodes with non-zero weights

Qnprα =

*......
,

sr (xi1 − x
n
p )eα

sr (xi2 − x
n
p )eα

...

sr (xi
(NB+1)d

− xnp )eα

+//////
-

.

The optimal coefficients cn+1
p can be expressed in terms of these

vectors as

cn+1
p =

argmin
c ∈ RdNr

dnp (c) =
(
(Qn

p )
TMn

pQ
n
p
)−1

(Qn
p )

TMn
p V̂

n+1
p

(12)

sr
st 1 x y xy д1 (x ) д2 (y ) д1 (x )y xд2 (y ) д1 (x )д2 (y )

1 a
x b
y b
xy c
д1 (x ) d (x )
д2 (y ) d (y )
д1 (x )y e (x )
xд2 (y ) e (y )

д1 (x )д2 (y ) f (x ,y )

Table 2. Sparsity pattern: modified. We illustrate the sparsity pattern
of the matrix (Snp )

Tmn
p S

n
p for dimension d = 2 with the modified qua-

dratic modes given by Equation (14). a = 1, b = ∆x 2
4 , c = ∆x 2

16 ,

d (z ) = (∆x 2−4z2 )2 (3∆x 2−4z2 )
16∆x 2 , e (z ) = (∆x 2−4z2 )2 (3∆x 2−4z2 )

64 , f (x, y ) =
(∆x 2−4x 2 )2 (3∆x 2−4x 2 ) (∆x 2−4y2 )2 (3∆x 2−4y2 )

256∆x 4 .

where the matrix Mn
p ∈ R

d (NB+1)d×d (NB+1)d is diagonal and con-
sists of (NB + 1) diagonal blocks mn

ip Id . Here Id ∈ Rd×d is the
d−dimensional identity.

6.3.1 Dimension-by-dimension decoupling. Our approach is only
efficient if the linear system for cn+1

p in Equation (12) can be solved
quickly. Fortunately, the matrix (Qn

p )
TMn

pQ
n
p ∈ R

dNr×dNr has re-
markable properties for polynomial velocity modes of the type in
Equation (2). First, because the matrix Mn

p is diagonal,

Mn
pQ

n
pt β =

*.......
,

mn
i1p

st (xi1 − x
n
p )eβ

mn
i2p

st (xi2 − x
n
p )eβ

...

mn
i
(NB+1)d p

st (xi
(NB+1)d

− xnp )eβ

+///////
-

.

Therefore, the entries in Mn
pQ

n
pt β are proportionate to the entries

in Qnprα . Thus, since they have the same dimension-by-dimension
sparsity as a consequence of the eβ and eα terms, the individual di-

mensions decouple when we take the dot productsQnprα ·
(
Mn
pQ

n
pt β

)
.

The exact expression for the entries in the matrix (Qn
p )

TMn
pQ

n
p are

then

Qnprα ·
(
Mn
pQ

n
pt β

)
=
∑
i
mn

i sr (xi − x
n
p )st (xi − x

n
p )eα · eβ .

Here we use r ,α to index the rows and t ,β to index the columns
of the matrix (Qn

p )
TMn

pQ
n
p . Furthermore, r ,t index the mode type

while α ,β index the dimension. Therefore the matrix entries Qnprα ·(
Mn
pQ

n
pt β

)
= 0 when α , β since eα · eβ = 0 when α , β . Thus the

coefficients cnprα are decoupled in α and the matrix (Qn
p )

TMn
pQ

n
p is

block diagonal with d identical diagonal blocks associated with the
dimension-by-dimension velocity modes.

The d non-zero diagonal blocks of (Qn
p )

TMn
pQ

n
p ∈ R

dNr×dNr are
each equal to (Snp )

Tmn
p S

n
p ∈ R

Nr×Nr . Heremn
p ∈ R

(NB+1)d×(NB+1)d

is diagonal with entries equal tomn
ip . Furthermore, the matrix Snp con-

sists of columns analogous to V̂n+1
p andQnprα , but with entries equal

to the scalar particle-wise local modes sr (xi − xnp ) at the grid nodes

with non-zero weights. Snp =
[
Snp1, . . . ,S

n
pNr

]
∈ R(NB+1)d×Nr with
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Fig. 9. MPM hyperelasticity. We compare from left to right APIC (green) and PolyPIC with Nr = 8 (blue), Nr = 11 (red), Nr = 14 (orange), Nr = 18 (yellow).
PolyPIC better conserves total energy which results in less numerical damping of the deformable motion.

columns

Snpr =

*......
,

sr (xi1 − x
n
p )

sr (xi2 − x
n
p )

...

sr (xi
(NB+1)d

− xnp )

+//////
-

∈ R(NB+1)d .

With this convention,Qnprα ·
(
Mn
pQ

n
pt β

)
= Snpr ·

(
mn
pS

n
pt

)
eα ·eβ and

the dimension-by-dimension decoupled equations for the optimal
coefficients cn+1

p are

Nr∑
t=1
Snpr ·

(
mn
pS

n
pt
)
cn+1
ptα = Q

n
prα ·

(
Mn
p V̂

n+1
p
)

=
∑
i
mn

ipsr (xi − x
n
p )v̂

n+1
iα

(13)

for 1 ≤ r ≤ Nr , where v̂n+1
iα is the α th component of v̂n+1

i .

6.3.2 Mass-orthogonal polynomial modes. The individual blocks
(Snp )

Tmn
p S

n
p ∈ R

Nr×Nr have further favorable sparsity structure. If
we assume that we number the modes with increasing degree (e.g.
in 2D, constant modes first: s1 = 1, followed by linear s2 = x ,s3 = y,
then multilinear: s4 = xy, etc) and if we use modes sr with r ≤ Nr ≤

2d , the matrix (Snp )
Tmn

p S
n
p is diagonal. This can be verified directly

using Mathematica [2016] and we provide Mathematica code in
[Fu et al. 2014]. Notably, this means that constant modes (r ≤ 1),
linear modes (1 < r ≤ d) and multilinear modes (d < r ≤ 2d ) are
mass-orthogonal and therefore the coefficients in Equation (13) can
be obtained through the solution of a diagonal system.

In general for 2d < r ≤ Nr ≤ (NB + 1)d , the matrix (Snp )
Tmn

p S
n
p

is not diagonal. We illustrate this in Table 1 with d = 2 for brevity.
However, we can obtain a diagonal system with a modified Gram-
Schmidt approach that takes into account the inner product defined
by mn

p . This amounts to simple modifications of the quadratic scalar
modes 2d < r ≤ Nr ≤ (NB + 1)d in Equation (2). Remarkably, the
Gram-Schmidt mass-orthogonalization does not modify any of the
constant, linear or multilinear modes. Only the quadratic modes are
modified and the change is very simple: each quadratic term z2

β in
Equation (2) is replaced with дβ (zβ ) given by

дβ (w ) = w2 −
xnpβ

(
∆x2 − 4(xnpβ )

2
)

∆x2 w −
∆x2

4 . (14)

E.g. the mode s5 = д1 (x ) replaces x2, s6 = д2 (y) replaces y2,
s7 = д1 (x )y replaces x2y, etc. This trivial modification yields a
diagonal (Snp )Tmn

p S
n
p whose entries we enumerate in Table 2. We

give expressions for the individual entries in the solution cn+1
p to

Equation (13) with diagonal basis in the supplementary technical
document [Fu et al. 2014].

We note that (NB + 1)d is a natural upper bound on the number
of reduces modes Nr since the minimization in Equation (12) is over
determined for Nr > (NB + 1)d .

7 MAC GRID
For clarity of exposition, we only consider the case of collocated
grids in Sections (§6.1) and (§6.3). For incompressible Euler we
transfer to and from staggered velocity MAC grids [Harlow and
Welch 1965]. Using iα , 1 ≤ α ≤ d to denote the face index for each
of the staggered grids, MAC transfers are done component-wise (see
Figure 4). Particle xnp transfers massmn

iαp
to each α face grid from

mn
iαp
= mn

pw
n
iαp

. The total mass on each grid face mn
iα

is equal to
the sum of the contribution from each particlemn

iα
=
∑
pm

n
iαp

. The
weight of interaction wn

iαp
= N (xiα − x

n
p ) is between the particle

xnp and the MAC face xiα . The component-wise particle-to-grid
momentum transfer is

(mv )niαp =m
n
iαp

∑
r

sr (ξ
n
p (xiα ) − x

n−1
p )cnprα

(mv )niα =
∑
p
(mv )niαp , v

n
iα =

(mv )niα
mn

iα
.

(15)

These transfers are very similar to those in Equation (11); how-
ever each face grid gets its own mass and respective component
of the momentum. This is slightly more costly since mass must be
transferred d times with the MAC grid instead of just one with the
collocated grid.

The transfers from grid to particle are also trivially done component-
wise since as discussed in Section (§6.3.1), the system in Equation (13)
decouples component-wise. However, unlike in the collocated case,
the mass matrix and scalar mode vectors will be different on each
of the velocity face grids. We use the notation mn

pα and Snptα to
denote this, where the appearance of α emphasizes that they vary
with each face grid. With this convention we can write the system
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Fig. 10. Energy conservation. We plot of the total energy as a function of
time for an elastic square with initial compressive dilation. The energy is
calculated as the sum of the elastic potential energy on the particles and
the kinetic energy on the grid.

for the reduced mode components cn+1
p ∈ RdNr as

Nr∑
t=1
Snprα ·

(
mn
pα S

n
ptα

)
cn+1
ptα =

∑
k=iα

mn
iα psr (xiα − x

n
p )v̂

n+1
iα (16)

for 1 ≤ r ≤ Nr . These systems are very similar to those in Equa-
tion (13). However, in the case of the MAC grid the matrices that
appear in the left-hand side (whose entries Snprα ·

(
mn
pαS

n
ptα

)
are

indexed by 1 ≤ r ,t ≤ Nr ) of Equation (16) are different on each of
the α grids. In Equation 13 there is only one matrix on the left-hand
side, independent of α .

8 RESULTS
We demonstrate our method on a number of examples with incom-
pressible flow and MPM elastoplasticity. We compare PolyPIC with
APIC and FLIP in a number of representative scenarios. All incom-
pressible flow simulations were done using Manta Flow [Thuerey
and Pfaff 2016]. In a few of our incompressible examples, we use
passive advected particles as a post-process to aid in visualization.
We note that these are simply advected in the flow for post-process
visualization and do not use PolyPIC transfers. Also, all grid inter-
polation is multilinear for the incompressible flow examples. All
grid interpolation is multiquadratic for the MPM elastoplasticity
examples.

8.1 Incompressible Flow
In Figure 3 we simulate a vortex sheet by setting the velocity inside a
circle to be initially rotating relative to a stationary surrounding fluid.
The discontinuity in the velocity induces vorticity at the interface

which produces intricate flow patterns. We compare PolyPIC to
FLIP and APIC and see that it better resolves the vorticial flow.

In Figure 1 we simulate an ink droplet in an ambient incompress-
ible fluid by dropping liquid onto a free surface. We only render
the particles in the jet. Note that the ink and water are both sim-
ulated as the same incompressible fluid. We compare PolyPIC to
FLIP and APIC and see that it again better captures the transition
to turbulence. We note that PolyPIC works well even when the grid
resolution is rather low. Figure 1 was run with a relatively low grid
resolution 64 × 256 × 64. We used 8 simulated particles per cell, and
8000 passively advected tracer particles per cell in a post-process
for visualization.

Figure 2 demonstrates a 3D version of the vortex sheet. The
cylinder is initially rotating about its axis relative to a stationary
ambient fluid. It was also run on a low resolution grid (88× 132× 88)
with 8 simulated particles per cell for simulation and 216 passively
advected tracer particles per cell in a post-process for visualization.
Despite the low resolution simulation, intricate flow patterns are
observed.

For all incompressible flow examples we use constant, linear and
multilinear modes (i.e. Nr = 2d ) with PolyPIC. This is the maximum
number of modes we can use because the grid interpolation in the
incompressible flow solver is multilinear (NB = 1) and, as discussed
in Section (§6.3.2), the number of reduced modes is bounded by
Nr ≤ (NB + 1)d .

8.2 MPM elastoplasticity
In Figure 7 we demonstrated the increasingly energetic nature of
PolyPIC elastoplasticity simulations as we add more polynomial
modes. Note that with Nr = 6 modes the sand flows more freely and
splashes off the jello more dramatically, while the Jell-O bounces
more readily.

In Figure 10 we demonstrate the improved energy conservation of
our method over APIC. In this scenario, a 2D hyperelastic square is
initially compressed. The total energy of the system should be con-
served with these initial and boundary conditions (zero traction). As
we add more polynomial modes, the energy preservation improves.
In Figure 9, we demonstrate how the increased energy retention
affects the dynamics of a Jell-O cube dropped on the ground.

8.3 Accuracy and the number of modes
We verify that adding additional modes increases the accuracy of
the simulation. In Figures 7 and 8 we examine the case of granular
sand flowing from a container onto Jell-0. In Figure 7 we see that
PolyPIC with Nr = 4 and APIC are less energetic than PolyPIC with
Nr = 6. The flow of the sand in the container suffers from more
numerical friction with PolyPIC Nr = 4 and APIC, therefore sand
flows out of the container much slower. We can see this because the
containers are still quite full in the final frame with PolyPIC Nr = 4
and APIC compared to PolyPIC with Nr = 6. In Figure 8 we rerun
the same simulations but with higher grid and particle resolution.
At this resolution, the PolyPIC Nr = 4 and APIC containers are all
nearly empty in the final frame and as a result all flows are similarly
energetic, indicating that PolyPIC with more modes gives a more
accurate result since it is more predictive of the refined behavior.
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Fig. 11. Momentum conservation. The top figure plots the linear and an-
gular momenta for the falling Jell-O’s in Figure 9. The bottom illustrates the
angular momentum loss resulting form transfers. We plot the momenta l̂n

and p̂n from Equation (17) to monitor the transfers effects on conservation.
APIC and PolyPIC preserve angular momentum during transfers, however
the FLIP/PIC blends are commonly used in incompressible flow simulations
do not. We illustrate this by comparing with increasing amounts of PIC.

8.4 Momentum conservation
We verify the angular momentum conservation properties of the
PolyPIC transfers. In Figure 11 we plot the linear and angular mo-
mentum over the course of the time step for the falling Jell-O exam-
ple shown in Figure 9. Even though the PolyPIC transfers conserve
the momenta, the grid momentum update and the application of
boundary conditions (Section (§6.2)) are not momentum conserving.
To illustrate the conservation of the momentum in the transfers, we
can monitor

l̂n = lnP2G +
n−1∑
m=1

lmgrid − l
m
P2G , p̂

n = pnP2G +
n−1∑
m=1

pmgrid − p
m
P2G (17)

Seconds/Frame ∆tmax Particles Cores

Ink Drop(FLIP99) 20.569 5 × 10−2 3.64M 16
Ink Drop(APIC) 23.188 5 × 10−2 3.64M 16
Ink Drop(PolyPIC) 31.466 5 × 10−2 3.64M 16
Cylinder(PolyPIC) 146.744 2 × 10−1 7.86M 12
Vortex Sheet(FLIP99) 2.367 1 × 10−1 0.97M 20
Vortex Sheet(APIC) 2.739 1 × 10−1 0.97M 12
Vortex Sheet(PolyPIC) 2.760 1 × 10−1 0.97M 20
Sand & Jello(APIC) 11.582 4 × 10−5 59.7K 12
Sand & Jello(PolyPIC4) 12.616 4 × 10−5 59.7K 12
Sand & Jello(PolyPIC6) 17.682 4 × 10−5 59.7K 12
Jello(APIC) 4.882 2 × 10−4 17.5K 48
Jello(PolyPIC8) 5.713 2 × 10−4 17.5K 48
Jello(PolyPIC11) 5.562 2 × 10−4 17.5K 48
Jello(PolyPIC14) 5.512 2 × 10−4 17.5K 48
Jello(PolyPIC18) 5.852 2 × 10−4 17.5K 48

Table 3. We list the time step sizes, run times, particle counts and number
of cores used for our simulations. We note that the Jell-O examples demon-
strate that increasing the number of reduced modes Nr in PolyPIC only
moderately increases the computational cost over APIC.

where ln = ∑i xi ×mivni and pn =
∑
imivni are the angular and lin-

ear momenta on the grid. lmP2G lmP2G are computed after the transfer
from particle to grid (Section (§6.1)) and lmgrid and pmgrid are computed
after the grid momentum update (Section (§6.2)). The quantities
lmgrid − l

m
P2G and pmgrid − p

m
P2G are the momenta lost during the grid

momentum update at time step tm . This is the only source of angu-
lar momentum loss for APIC and PolyPIC and thus the quantities in
Equation (17) should be constant for those methods. We visualize
the angular momentum loss from transfers in Figure 11. The straight
lines indicate conservation.

9 DISCUSSION AND LIMITATIONS
While our method is a natural extension to the APIC approaches in
[Jiang et al. 2015, 2017b], it has some apparent drawbacks. Adding
more polynomial modes helps to increase the energy conservation
during transfers which reduces numerical dissipation. However,
numerical dissipation is often desirable. Most everyday examples of
elasticity involve some type of damping term and numerical dissi-
pation is often an acceptable approximation to this. Also, numerical
dissipation in the transfers can help to stabilize the method. At large
time steps PIC calculations will go unstable and numerical dissi-
pation can increase the critical time step size at which instability
dominates. Indeed we found that introducing too many modes for
the hyperelastic simulations can lead to small time steps. In general,
we set ∆t = min( CFL∆x

max_v ,∆tmax) where max_v is the magnitude of
the maximum velocity, 0<CFL<1 and ∆tmax is typically about 1e-3
(see Table 3). If simulations go unstable, we shrink ∆tmax. We notice
that ∆tmax will decrease to around 1e-5 if we use larger numbers
of modes and this can lead to longer run times. We typically use
explicit symplectic Euler (SE) integration for the grid momentum
update and energy loss in transfers helps to stabilize it.

Our approach incurs storage proportionate to the number of
modes since each particle must store the coefficient of the poly-
nomial bases used to locally represent the velocity field, however
in the case of affine polynomials this is equivalent to storing the
velocity and velocity derivative, thus for Nr ≈ d + 1 the storage is
approximately that of original APIC. Similarly, our transfers have
computational cost that is linear in the number of reduced modes.
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Therefore, the run time will increase slightly with additional modes.
We demonstrate this by progressively adding more modes in the
Jell-O examples in Figure 9. Run times are given in Table 3.

The number of nodes with nonzero weights implies a threshold
on the number of velocity modes Nr ≤ (NB + 1)d . For larger Nr the
system for cn+1

p is overdetermined since there would be more modes
than grid node velocity values to determine them from. In principle,
our method would still work however we did not investigate this
possibility. Interestingly, we noticed that with Nr = (NB + 1)d the
transfer from grid to particle then back to grid is lossless (neglecting
motion of the particles) (see [Fu et al. 2014]).
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